Солнечная Система, Галактика, Вселенная


Наша Солнечная Система как небольшой оазис в нашей галактике, которая является крошечным островком во Вселенной. Подразумевая нашу Солнечную Систему, галактику и Вселенную, вам нужно знать несколько основных фактов об относительном размере каждой. Здесь есть несколько фактов о каждой. Надеемся, они помогут вам лучше понять Вселенную вокруг вас.

Наша Солнечная Система — самый маленький объект из них в этой статье, так давайте начнем с нее. Есть несколько способов рассмотреть размер Солнечной Системы. Я предпочитаю говорить, что она заканчивается у гелиопаузы (граница гелиосферы). Это конец влияния Солнца на межзвездную среду и происходит в 90 а.е во всех направлениях. Гелиосфера не совершенно круглая, так что 90 а.е. с некоторой погрешностью. Если бы вы пытались оценить размер Земли в перспективе, она была бы размером с горошину по сравнению с Солнечной Системой. Ученые только получают первые надежные данные из гелиосферы. Voyager 1 и Voyager 2 покидают Солнечную Систему и продолжают отправлять сигналы. Никто не знает, когда зонды перестанут транслировать сигналы.

Солнечная Система — это только крошечная часть галактики Млечный Путь. Наша галактика — это спиральная галактика с перемычкой, а Солнечная Система находится в небольшом ответвлении одного рукава, называемом Orion Spur. В нашей галактике 200 миллиардов звезд, но они очень далеки друг от друга. Звезда, самая близкая к Солнцу находится в система Альфа Центавра (Alpha Centauri). Эта звезда находится от нас в 4 световых годах, 37,842,921,890,323.2 км от нас. Всего лишь короткий прыжок отсюда в галактических терминах.

Это подводит нас к Вселенной. Размер Вселенной невозможно вычислить. Всюду вокруг нас, Вселенная расширяется, и расстояния до других галактик увеличиваются. Текущие технологии не могли бы никогда не надеяться измерить много затронутых расстояний. Это следует изменить, так как много видов телескопов и отраслей астрономии становятся более продвинутыми.

Название прочитанной вами статьи «Солнечная Система, Галактика, Вселенная».

Похожие статьи:

universetoday-rus.com

Галактика. Звезды. Солнечная система | Kursak.NET

Галактики

Вселенная образована огромным количеством галактик. Галактика (от греч.galaktikos – молочный, млечный) – звездная система, образованная звездами различных типов, звездными скоплениями. Помимо звезд в состав галактик могут входить газовые, пылевые туманности и др. Разным галактикам соответствуют различные, но вполне определенные элементы. Состав галактик зависит от ее возраста и условий развития. Полагают, что среднее расстояние между галактиками 2млн.свет.лет, а типичная скорость движения галактик около 1000км/с. Согласно расчетам, для прохождения расстояния до ближайшей соседки требуется около 1млрд. лет и возможность столкновения с себе подобной не исключена.

Галактик миллиарды и каждой из них насчитываются миллиарды звезд. Предположения о множественности галактик высказывались еще в середине VIIIв., но доказательства их существования появились только в первой четверти XXв. Галактики образуют Метагалактику (Вселенную), размеры которой оцениваются в 15-20млрд.свет.лет, а возраст – в 13-15млрд.лет. Некоторые галактики излучают радиоволны с потрясающей мощностью. Предполагают, что в них существует магнитное поле, тормозящее движение находящихся там элементарных частиц, а это вызывает радиоизлучение.

В 60-ых годах ХХв. были открыты квазарыквазизвездные радиоисточники – самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размерами в десятки раз меньшими их. Природа квазаров пока неясна. Возможно, что квазары представляют собой ядра новых галактик, а значит, процесс образования галактик продолжается и поныне. Галактики имеют свой центр (ядро) и различную форму, в соответствии с которой их классифицируют как

спиральные, эллиптические, шаровые, неправильные. Вследствие удаленности галактик свет от входящих в них миллиардов звезд сливается, создавая впечатление светящегося туманного вещества, поэтому галактики получили название туманностей.

Наблюдаемая в созвездии Андромеды туманность – большая галактика – Туманность Андромеды. Это спиральная галактика, находящаяся от на нас расстоянии около 2млн.свет.лет. Туманность Андромеды – ближайшая к нам галактика. Она была открыта в 1917г. как первый внегалактический объект. В 1923г. путем спектрального анализа в этом объекте были обнаружены звезды и таким образом доказана его принадлежность к другой галактике. Туманность Андромеды имеет спутники эллиптической или шаровидной формы – более мелкие галактики. Еще одна спиральная галактика находится в созвездии Треугольника. По размерам она меньше Туманности Андромеды и не имеет спутников.

Галактики образуют группы галактик. Таких групп во Вселенной множество, они могут быть малыми и большими. Так, огромное облако, наблюдаемое в созвездии Девы, состоит из сотен галактик. В состав одной из групп – Местного скопления входят спиральные галактики вместе с их спутниками: Туманность Андромеды, галактика в созвездии Треугольника и Наша Галактика. Наша Галактика – это звездная система, в которую входят все звезды, видимые в созвездиях, и все звезды Млечного Пути, а также газовые и пылевые туманности. Пылевые туманности – облака в межзвездном пространстве,

образованные очень мелкой космической пылью.

Космическая пыль препятствует прохождению света от звезд, поглощая его. Причем в большей степени поглощается коротковолновая, сине-зеленая часть спектра, поэтому свет звезд становится более желтоватым и даже красноватым. Космическая пыль является существенной помехой для исследований, поскольку она искажает свет звезд, ослабляет их блеск, а более далекие из них делает совсем невидимыми. Полагают, что в малой доле космическая пыль образуется от столкновения и разрушения мелких твердых тел, но в своей основной массе она возникает, вероятно, вследствие сгущения межзвездного газа.

Межзвездный газ был обнаружен по линиям поглощения в спектрах звезд. В его состав входит преимущественно водород, в меньшей степени – гелий; содержание азота и других легких газов небольшое. Межзвездный газ в крайне низких концентрациях имеется в большей части межзвездного пространства, а в отдельных местах образует скопления –

газовые туманности. Считают, что газ в туманностях частично является остатком тех газов, из которых когда-то возникли звезды, а также возникает и теперь: он выбрасывается звездами. В местах скопления газа может содержаться значительное количество космической пыли – это газово-пылевые туманности. Газовые и газово-пылевые туманности изучают с помощью астрономических приборов благодаря их свечению. Свечение газов в крупных газовых туманностях можно наблюдать потому, что толщина их огромна, а общая масса составляет от нескольких десятков до сотен тысяч масс Солнца. Газовые туманности бывают разных размеров и различной, чаще неправильной формы. Туманности правильной, округлой формы – небольшие. Их называют планетарными.

В отличие от крупных газовых туманностей, масса планетарных туманностей очень мала: она составляет десятые и даже сотые доли массы Солнца. В центре каждой такой туманности имеется ядро – небольшая звездочка. Полагают, что это самые горячие из звезд, поскольку их излучение заставляет светиться планетарную туманность. Планетарные туманности образуются из газов, выделяемых звездой. Они недолговечны, поскольку медленно, со скоростью нескольких километров в секунду, расширяются в пространстве и со временем рассеиваются. Согласно расчетам, планетарные газовые туманности могут быть видимыми около 10 тысяч лет.

Две туманности, наблюдаемые в южном полушарии неба – галактики неправильной формы – Большое и Малое Магеллановы Облака – являются спутниками Нашей Галактики. Расстояние до них оценивается в 120тыс.свет.лет, а размеры этих галактик составляют 26 и 17тыс.свет.лет. По данным исследований, они состоят из звезд всевозможных типов, а также из газовых и пылевых туманностей. В них есть рассеянные и шаровые звездные скопления. Наша Галактика по форме очень похожа на Туманность Андромеды, обе имеют спутники. По размерам Наша Галактика несколько меньше.

Наша Галактика называется Млечный Путь. Млечный Путь опоясывает все небо как гигантская светящаяся лента. Это довольно большая галактика, имеющая диаметр около 100тыс.свет.лет и включающая в себя более 100млрд. звезд, в т.ч. Солнце. Полная масса Галактики равна 150 млрд. солнечных масс. Более яркие, близкие звезды расположены тем гуще, чем они ближе к средней линии Млечного Пути. Среднюю линию Млечного Пути называют галактическим экватором. Плоскость галактического экватора – это плоскость симметрии нашей звездной системы.

Звездные скопления, звезды, газовые туманности, облака космической пыли сосредоточены в основном около этой плоскости. Только шаровые звездные скопления и звезды некоторых типов не подчиняются этому закону: они заполняют сферический объем, концентрируясь со всех сторон к центру Галактики. При этом 95% массы Галактики расположено около галактической плоскости. На долю сферической составляющей приходится около 5% вещества Галактики. Таким образом, большая часть звезд Нашей Галактики сосредоточена в гигантском «диске» толщиной около 1500свет.лет. Наша Солнечная система находится очень близко к галактической плоскости, в которой звезды расположены наиболее тесно.

Из-за облаков пыли, ослабляющих свет далеких звезд, очень трудно выяснить подробности строения Галактики. Установлено, что Наша Галактика имеет спиральное строение. Из ее ядра выходят две (возможно, более) спиральные ветви. Они состоят из звезд, газовых и пылевых туманностей и закручиваются вокруг ядра. Расположение спиральных ветвей точно пока не выяснено, но Солнце находится между ними, а самые горячие и яркие звезды группируются в звездных облаках, непосредственно образующих спиральные ветви.

Много неясного связано с ядром Галактики. Его линейные размеры оценивают приблизительно в 4000свет.лет. Ядро является источником очень мощного излучения. Однако на звездном небе ядро Галактики не видно, поскольку заслонено облаками космической пыли, через которые его свет не доходит до нас. Ядро можно наблюдать, только применяя особые способы фотографирования. Вокруг ядра Галактики все звезды вращаются с разной скоростью. Скорость движения Солнечной системы вокруг центра Галактики около 250км/с. На один оборот ей требуется примерно 200млн. лет. Расстояние от Солнца до центра Галактики около 30тыс.свет.лет, а до ее края несколько меньше. Чем ближе к краю Галактики, тем разреженнее звезды. Свет всех далеких и слабых звезд сливается для нас в сплошное кольцо Млечного Пути. Предполагают, что вокруг многих звезд должны быть планетные системы. Даже если только на тысячу звезд приходится одна обитаемая планета, то и тогда во всей Галактике таких планет должно быть 100млн.

Звезды

Звезды – самосветящиеся небесные тела, состоящие из раскаленных газов. Солнце – ближайшая к нам звезда. Расстояние от Земли до Солнца – 8,3свет.мин. Состав звезд, а также их температуру, исследуют посредством спектрального анализа. Спектральный анализ – метод в астрофизике, позволяющий изучать химический состав светил с помощью исследования их спектров.

Изучение спектров звезд позволило сделать вывод о том, что они состоят из атомов тех же химических элементов, что и все тела на Земле. В составе звезд преобладают водород (около 50% по массе) и гелий (около 40%). Атомы остальных химических элементов встречаются почти в таком же соотношении, как и на Земле. Вещество звезд представляет собой раскаленный газ. С учетом того, что масса звезд гораздо больше массы планет, понятно, что подавляющее большинство вещества Вселенной находится в состоянии раскаленного газа. При этом очень малая его доля находится в твердом и жидком состоянии, а живое вещество, даже если у многих звезд имеются обитаемые планеты, составляет ничтожную часть.

Внутреннее строение звезд рассчитывается, исходя из следующего: элементарные частицы – электроны, протоны, фотоны и др. – одни и те же и в звездах, и на Земле. Поэтому при изучении внутреннего строения звезд применяют общие законы физики. Согласно современным представлениям, звезды светят вследствие того, что в их недрах происходят ядерные реакции: водород превращается в гелий, в результате чего и освобождается атомная энергия. Поскольку содержание атомов водорода в звездах велико, то за счет таких преобразований большинство звезд может излучать энергию. Вследствие происходящих атомных превращений постепенно меняется их химический состав, что может служить указанием на направления звездной эволюции.

Впечатление о бесчисленности звезд, видимых невооруженным глазом, ошибочно. В безлунную ночь, в ясную погоду на небе видно всего лишь 3000 звезд. Мерцание звезд усиливает впечатление об их бесчисленности – одни и те же звездочки кажутся то ярче, то слабее из-за того, что между ними и нами протекают струйки воздуха различной плотности. Изучение звезд было вызвано потребностями материальной жизни общества – необходимостью ориентироваться при путешествиях, созданием календаря, определением точного времени. Еще в глубокой древности звездное небо было разделено на созвездия.

Созвездия – участки, на которые разделяют звездное небо по фигурам, образуемым яркими звездами. Всего насчитывается 88 созвездий, ими пользуются для ориентировки на звездном небе. Принадлежность звезды к одному созвездию – это их видимая, или перспективная, близость. На самом деле звезды, причисляемые к одному созвездию, находятся на самых различных расстояниях от нас. Наблюдаемые на небе звезды характеризуются различным блеском, интенсивность которого определяется звездной величиной.

Звездная величина – принятая в астрономии единица измерения видимого блеска звезд и других небесных тел. Чем слабее светится звезда, тем больше число, обозначающее ее звездную величину.

Самые яркие назвали звездами 1-ой величины. Самые слабые из видимых невооруженным глазом относят к звездам 6-ой звездной величины. Звезды 1-ой величины ярче звезд 6-ой величины в 100 раз. В бинокль видны звезды 8-9-ой величины, а в телескоп еще более слабые. Звезд 1-ой величины на всем небе около 20. Звезд 2-ой величины, таких, как главные звезды созвездия Большой Медведицы, – около 70. Всего видимых звезд, т.е. 6-ой величины и ярче, около 6000. Учитывая, что над горизонтом видна только половина всего неба, одновременно наблюдать можно максимально около 3000 звезд.

Звездная величина к действительной интенсивности испускаемого звездой излучения не имеет прямого отношения. Истинная сила света звезды характеризуется светимостью. Светимость определяется как отношение сила света звезды к силе света Солнца.

Зная расстояние до звезды и ее видимый блеск с Земли, вычисляют, каким был бы блеск звезды, если бы она находилась на расстоянии Солнца. Отношение такого предполагаемого блеска звезды к блеску Солнца характеризует её светимость. Если светимость звезды равна 5, то это значит, что она в 5 раз ярче Солнца. Если светимость обозначается 0,2, то такая звезда в 5 раз слабее Солнца. Наибольшей известной светимостью, в 400 раз большей светимости Солнца, обладает звезда S из созвездия Золотой Рыбы.

Число звезд большой светимости среди звезд, видимых невооруженным глазом, непропорционально велико, так как такие звезды видны на больших расстояниях. На самом деле звезды большой светимости в окрестностях Солнца встречаются гораздо реже, а звезды с меньшей светимостью – чаще. Из 20 ближайших к нам звезд только 3 видны невооруженным глазом, а из 20 звезд, кажущихся нам яркими, только 3 входят в число ближайших.

Основной метод определения расстояний до звезд состоит в измерении их видимых смещений, вызываемых обращением Земли вокруг Солнца. По смещению, величина которого обратно пропорциональна расстоянию, вычисляют и само расстояние. Годичные смещения звезд составляют обычно доли микронов, реже – несколько микронов. Расстояние до звезд может определяться и другими способами: например, исходя из светимости звезды и ее блеска.

Наблюдаемые с Земли звезды различного цвета: голубоватые, белые, желтые, оранжевые и красные. Цвет звезд соответствует температуре их поверхности. Голубоватые звезды самые горячие – температура на их поверхности составляет десятки тысяч градусов. Температура белых звезд – порядка 103К, желтых (как наше Солнце) – около 6000К, а красных – 3000К и ниже. По направлению к центру звезды температура повышается и в центре достигает миллионов и десятков миллионов градусов. В недрах звезд происходит превращение водорода в гелий, эти реакции поддерживают мощное тепловое и световое излучение звезд в течение огромных промежутков времени. Было установлено, что не только количество, но и качество излучения (цвет) определяется температурой. Раскаленное тело излучает свет всех цветов (всех длин волн), но в зависимости от температуры накала максимум излучения приходится на различные области спектра, вследствие чего суммарное излучение имеет то красный, то белый, то голубоватый цвет. Изучение звездных температур производят на основе спектрального анализа или посредством измерения количества тепла, приходящего от него на Землю.

Звездный мир чрезвычайно многообразен. Различают несколько видов звезд: это гиганты и карлики, одиночные, двойные и кратные, переменные и новые. Звезды-гиганты – огромные звезды, в миллионы раз по объему больше Солнца. Такие звезды встречаются редко. Самые большие звезды называются сверхгигантами. Так, сверхгигант Антарес в созвездии Скорпиона по диаметру в 450 раз больше Солнца. Звезды-карлики, напротив, имеют относительно небольшие размеры. Наше Солнце считается карликом, а оно больше Земли в диаметре в 109 раз. В зависимости от цвета звезды различают красные карлики, белые карлики. Красные карлики меньше Солнца по диаметру примерно в 10 раз. Считают, что именно они составляют большую часть звезд. Белые карлики имеют еще более мелкие размеры и встречаются редко.

Звезды-гиганты и звезды-карлики сильно различаются по плотности. Средняя плотность Солнца в 1,4 раза больше плотности воды, а средняя плотность белых карликов в 30 раз больше плотности воды. При этом у гигантов и сверхгигантов плотность газов, из которых они состоят, очень мала – в сотни тысяч раз меньше плотности воды.

Двойные звезды – системы, состоящие из двух звезд, каждая из которых обращается вокруг их общего центра тяжести. Обычно более яркую звезду в паре называют главной, а другую – ее спутником.

Ярчайшая звезда неба Сириус – двойная. Спутник этой звезды – белый карлик – обращается вокруг главной звезды за 50 лет и отстоит от нее в 20 раз дальше, чем Земля от Солнца.

Среди двойных звезд различают так называемые спектрально-двойные звезды – тесные пары звезд, которые нельзя увидеть раздельно при помощи современных оптических средств. Двойственность их обнаруживается по периодическим смещениям линий в спектрах.

Системы, состоящие из трех, четырех или более звезд, называются кратными звездами.

Ближайшая к нам звезда α-Центавра, видимая в Южном полушарии Земли, в действительности состоит из двух главных звезд, очень сходных с нашим Солнцем. Период их обращения почти 80 лет, а среднее взаимное расстояние в 23 раза больше расстояния от Земли до Солнца. У этих двух звезд есть спутник – красный карлик. Таким образом, α-Центавра – пример тройной звезды. Кратные звезды встречаются значительно реже, чем двойные.

Переменные звезды – звезды, блеск которых со временем меняется. Параллельно с изменением блеска меняется их цвет и температура, а иногда и размеры.

Причиной переменности может являться периодическое затмение одной звезды другой. Гораздо чаще происходят действительные изменения размеров и температур звезд: они сжимаются и расширятся – пульсируют. Промежутки между моментами наибольшего сжатия или расширения у одних переменных звезд составляют годы, у других – только часы.

В зависимости от характера изменения блеска и причин, его вызывающих, переменные звезды подразделяются на различные типы.

Затменные переменные звезды – очень тесные двойные звезды, плоскость орбиты которых проходит через луч зрения. При обращении вокруг общего центра тяжести обе звезды попеременно закрывают друг друга, так что общий блеск системы во время затмений ослабевает.

Другой разновидностью переменных звезд являются цефеиды. Их так называют по типичной представительнице этого класса звезд звезде δ в созвездии Цефея. Все цефеиды являются звездами-гигантами и сверхгигантами. Изменение блеска у них происходит строго периодически. Открытие зависимости между периодом изменения блеска у цефеид и их светимостью дало возможность определять расстояние до очень далеких звездных систем, если в них имеются цефеиды.

Цефеиды – пульсирующие звезды. Пульсирует, расширяясь и сжимаясь, все тело звезды. При сжатии ее происходит нагревание, а при расширении – охлаждение. Изменение размера и температуры поверхности звезды и вызывает колебания ее излучения.

Новые звезды – звезды, излучение которых внезапно увеличивается в тысячи раз, а затем медленно уменьшается. Это некоторые красные карлики.

Изменения, происходящие в звезде за время вспышки столь велики, что за несколько суток небольшая звезда-карлик превращается в гиганта. Блеск её увеличивается более чем в 10тыс. раз. От нее отделяется газовая оболочка, которая, продолжая расширяться, рассеивается в пространстве. В наибольшем своем блеске раздувшаяся оболочка больше нашего Солнца по диаметру в сотни раз. Новая звезда в большом блеске остается недолго, обычно около суток, затем ее блеск начинает ослабевать и звезда вновь сжимается до прежних размеров.

Исследованиями установлено, что в Нашей Галактике ежегодно происходит около 100 вспышек новых звезд, но мы замечаем лишь ближайшие из них. Вспышка не означает возникновения или уничтожения звезды. Через некоторый промежуток времени эта же звезда может вспыхнуть вновь. Вспышки являются следствием нарушения устойчивости звезды, вызванного внутренними причинами. Сущность этих причин пока не выяснена. Иногда в Нашей и других галактиках наблюдаются вспышки сверхновых звезд. При таких вспышках звезды излучают свет в миллионы и в сотни миллионов раз интенсивнее, чем Солнце. Сверхновые звезды явление крайне редкое. Последней сверхновой, наблюдавшейся в Нашей Галактике, была звезда, которую наблюдал Кеплер в 1604г. Таким образом, даже в таких гигантских звездных системах как наша вспышка сверхновой звезды бывает один раз в несколько столетий.

Согласно расчетам, допускают, что в ряде случаев в результате вспышки сверхновой остаток звездной массы катастрофически сжимается и звезда превращается в быстро вращающуюся нейтронную. Нейтронные звезды – предполагаемые звезды, состоящие из нейтронов. Они чрезвычайно плотные и очень малы – имеют в поперечнике около 10 км. Различают невидимые космические объекты, которые посылают огромное невидимое пульсирующее радиоизлучение – пульсары. Пульсары — точечные источники радиоизлучения, испускающие импульсы с очень коротким периодом. Возможно, пульсары представляют собой нейтронные звезды.

Звезды имеют огромные различия по размеру и плотности. При этом массы звезд не отличаются так значительно и колеблются в пределах от 0,1 до нескольких десятков солнечных масс. Однако непосредственно массы звезд могут быть определены лишь у двойных звезд. Изучение масс двойных звезд показало, что между массами и светимостью звезд существует некоторая зависимость. В среднем, светимость большинства звезд пропорциональна ее массе в степени 3,3. Это соотношение позволяет определять массы звезд косвенно, по их светимости. Предполагают, что многие звезды окружены планетами. Вследствие дальности расстояния пока еще не удается непосредственно увидеть планеты около других звезд даже в самые мощные телескопы. Для их обнаружения необходимы тонкие методы исследования, тщательные наблюдения в течение десятков лет и сложные расчеты.

Около некоторых ближайших звезд уже обнаружены невидимые спутники малой массы. Их вычислили по еле заметным движениям звезд под действием притяжения их невидимым спутником. Пока еще с достоверностью не установлено, являются ли эти спутники планетами или же крайне слабо светящимися маленькими звездами. Однако есть все основания предполагать, что наша планетная система не является исключительным явлением в мировом пространстве. На планетах, окружающих другие звезды, также вероятно существование жизни и Земля не представляет в этом отношении исключения.

В результате астрономических исследований для множества звезд точно определены положение на небе, их звездная величина, а также другие характеристики. По имеющимся сведениям составлены звездные каталоги, в которые занесены около миллиона звезд. Таким образом, около миллиона звезд находятся на строгом учете, а не просто посчитаны. По установленным положениям звезд на небе составляются карты звездного неба. Известно, что звезд ярче 21-ой звездной величины около 2 млрд. Одна из них – Солнце.

Солнце по всем признакам является рядовой звездой. Полагают, что возраст Солнца – 4-5млрд. лет. Ближайшие к Солнцу звезды – α-Центавра и Сириус. Скорость движения Солнца вокруг оси Галактики – 250 км/с. Расстояние от Земли до Солнца 8,3свет.мин. или 149,6млн.км. Диаметр Солнца оценивается в 1,4млн.км. Масса Солнца в 333 тыс. раз больше массы Земли, а его объем больше земного в 1млн. 304 тыс. раз. Средняя плотность Солнца выше плотности воды в 1,4 раза. Но плотность вещества распределена неравномерно: внутри Солнца она чрезвычайно высокая, а снаружи – крайне низкая, в сотни раз меньшая, чем воздух.

На основании проведенных исследований сделаны выводы о строении Солнца. Полагают, что Солнце состоит из нескольких слоев – внутренних и внешних. К внутренним слоям относятся ядро, область лучистого переноса энергии и конвективная зона. Внешние слои образует атмосфера.

Ядро находится в центре Солнца. Его радиус составляет 1/3 солнечного радиуса. В ядре сосредоточена большая часть вещества Солнца. Температура вещества в центре Солнца превышает 10 млн.К. В условиях сверхдавления и сверхвысокой температуры вещество ядра ионизировано, т.е. представляет собой плазму. Частицы плазмы находятся в постоянном движении, скорость которого огромна. Поэтому между частицами непрерывно происходят ядерные реакции, в результате которых из атомов водорода образуются атомы гелия и выделяется большое количество энергии. Например:

1Н2+1Н1=2Не3

22Не3=2Не4+21Н1+энергия

Водородные ядерные реакции – источник солнечной энергии. За время своего существования Солнце не израсходовало еще и половины запасов водородного ядерного топлива. В течение почти всего этого времени излучение Солнца почти такое же, как и теперь. Так оно и будет светить миллиарды лет, пока в недрах Солнца весь водород не превратится в гелий.

Область лучистого переноса энергии следует за ядром. Полагают, что её толщина примерно равна радиусу ядра. Здесь в результате поглощения квантов, их дробления и переизлучения энергия переносится наружу.

Выше находится конвективная зона, толщиной примерно 200 тыс. км. Температура в конвективной зоне уже значительно ниже. Конвективная зона не может полностью передать огромное количество энергии, поэтому систематически ядерное вещество прорывается в наружные слои таким образом, что конвекция на Солнце напоминает кипение воды. Эта зона переходит во внешние слои Солнца – атмосферу. Солнечная атмосфера также состоит из нескольких слоев: фотосферы, хромосферы и короны.

Фотосфера – самый глубокий и тонкий слой атмосферы. Здесь возникает подавляющее количество световых и тепловых лучей, посылаемых в пространство. Толщина фотосферы 200-300 км, её температура оценивается в 6000К. За фотосферой следует хромосфера – слой раскаленных газов толщиной 10-20 тыс. км. Поскольку в верхних слоях солнечной атмосферы световая энергия в значительной степени переходит в тепловую, температура хромосферы значительно выше температуры фотосферы и оценивается в десятки тысяч К.

Корона – внешняя часть атмосферы Солнца. Температура в этой части Солнца – более 1млн.К. В короне плазма очень сильно разрежена, плотность ее в миллиарды раз меньше плотности воздуха. Поэтому корона еще прозрачнее, чем хромосфера и количество излучаемого ею света очень мало. Яркость короны в миллионы раз меньше яркости фотосферы. Температура по мере удаления от поверхности Солнца уменьшается.

Солнечная корона имеет огромные размеры – более 200 радиусов Солнца – и достигает орбиты Марса. Таким образом, Земля оказывается, образно говоря, погруженной в солнечную корону. В этой связи на Землю постоянно воздействует так называемый солнечный ветер – поток заряженных частиц, испускаемых Солнцем. При соприкосновении с атмосферой Земли он отклоняется верхними ее слоями – ионосферой. Хотя внешние слои солнечной атмосферы имеют температуру более 1млн.К, их излучение составляет ничтожную долю от общей энергии, испускаемой Солнцем. Почти вся энергия исходит от фотосферы, имеющей температуру около 6000К.

Изучение температуры в различных частях Солнца производится радиоастрономическими методами. Установлено, что чем выше температура тела, тем более интенсивно оно излучает радиоволны. Доходящее до нас радиоизлучение Солнца возникает не в фотосфере, а в его короне.

Периодически, с циклом в среднем около 11 лет, в солнечной атмосфере появляются активные области, число которых регулярно меняется. О возникновении активной области свидетельствуют солнечные пятна, наблюдаемые в фотосфере. Температура пятна примерно на 1000К ниже температуры окружающей фотосферы. В активной области часто наблюдаются вспышки, яркость которых высока. В результате вспышек образуются направленные потоки очень быстрых заряженных частиц и космических лучей. Достигая Земли, этот поток вызывает заметные неправильные изменения магнитного поля Земли – так называемые магнитные бури. Причина периодичности солнечной активности пока неясна. Предполагают, что строение Солнца и процессы, происходящие в нем, могут быть типичными и для многих других звезд.

Солнечная система.

В настоящее время является не решенной проблема происхождения Солнечной системы. Гипотезы ее возникновения следующие:

— планеты Солнечной системы сформировались путем объединения твердых, холодных тел и частиц, входящих в сосав туманности, которая когда-то окружала Солнце;

— спутники планет образовались из роя частиц, окружавших планеты.

Орбиты всех планет являются почти круговыми и лежат в одной плоскости, совпадающей с экваториальной плоскостью Солнца. Общая масса всех планет Солнечной системы составляет всего 2% от массы Солнца.

Теории происхождения Солнечной сисемы:

— небулярная гипотеза Канта-Лапласа;

— приливная;

— захват Солнцем облака межзвездного газа;

— кометная.

Небулярная гипотеза Канта-Лапласа. По Канту, орбитальное движение планет возникло «после нецентрального удара частиц как механизма возникновения первичной туманности» (ошибочное предположение, т.к. движение могло начаться только при косом ударе туманностей). Он считал причинами, противодействующими стремлению к «равновесию», химические процессы внутри Земли, которые зависят от космических сил и проявляются в виде землетрясений и вулканической деятельности (1755).

П.Лаплас исходил из горячей медленно вращающейся туманности, которая по мере охлаждения сжималась. По закону сохранения момента импульса при этом росла скорость вращения и центробежные силы отрывали от нее кольца. Материя в этих кольцах сжималась под действием тяготения, формируя компактные тел.

Приливная или планетозимальная гипотеза. В ХХ в. американцы Т.Чемберлен и Ф. Мультон рассмотрели идею встречи Солнца со звездой, вызвавшей приливной выброс солнечного вещества (1906), из которого и образовались планеты. С.Аррениус допустил и прямое столкновение Солнца со звездой (1913). В результате появилось некое волокно, распавшееся при вращении на части – основу планет. Дж. Джинс предположил (1916), что какая-то звезда прошла неподалеку от Солнца и вызвала «приливные выступы», принявшие форму газовых струй, из которых и возникли планеты.

Гипотеза захвата Солнцем межзвездного газа. Ее предположил шведский астрофизик Х.Альфен (1942). Атомы газа ионизировались при падении на Солнце и стали двигаться по орбитам в его магнитном поле, поступая в определенные участки экваториальной плоскости. Академик В.Г.Фесенко (астрофизик) предположил, что образование планет связано с переходом от одного типа ядерных реакций в глубинах Солнца к другому. Дж.Дарвин астроном и математик и математик А.М. Ляпунов рассчитали независимо друг от друга фигуры равновесия вращающейся жидкой несжимаемой массы. Согласно О.Струве, быстро вращающиеся звезды могу выбрасывать вещество в плоскости своих экваторов. В результате этого образуются газовые кольца и оболочки, а звезда теряет массу и момент количества движения.

Кометная гипотеза происхождения планет Солнечной системы. Распространена в настоящее время, предложил ее А.А.Маркушевич (1992). В газопылевой туманности, имеющей вид дискообразного вращающегося облака и состоящей из мелких пылевидных железосиликатных частиц и газов – воды и водорода, при понижении температуры газы намерзали на пылинки, увеличивая их размер. Возникал состав, свойственный составу комет. Частицы сталкивались между собой, большие по объему концентрировались в центре туманности, а меньшие оттеснялись на периферию, дав начало планетам. Шло укрепление и разрастание образующихся тел – астероидов, комет, планет. При образовании планет происходила аккреция (стяжение кометной массы), выделялась теплота, которая разогревала центр сгустка до расплавленного состояния и расслаивала водородную оболочку и железосиликатное ядро, которое позже расслоилось на железоникелевое ядро и силикатную оболочку, которая не позволяла рассеиваться теплоте в космическом пространстве. Так планета приобрела почти сферическую форму. По своим физическим характеристикам планеты Солнечной системы делятся на две группы: планеты земной группы и газовые (или планеты-гиганты).

Планеты Солнечной системы – земная группа. Крупнейшими после Солнца объектами Солнечной сис­темы являются планеты и их спутники. Общая масса пла­нет составляет 448 масс Земли, а спутников -0,12 массы Земли. Суммарная масса планет и спутников составляет лишь 1/750 часть массы Солнца. Планеты Солнечной сис­темы достаточно сильно различаются между собой.

Ближайшие планеты – Меркурий, Венера, Земля и Марс – называются твердыми планетами, поскольку име­ют плотность, в 4-5 раз превышающую плотность воды, и твердую поверхность. Плутон представляет собой несформировавшуюся твердую планету, по своим характеристикам напоминающую планеты первой группы. Кроме того, у Плутона есть спутник Харон, лишь в два раза меньший Плутона. Наконец, существуют предположения о большой десятой темной планете.

Каждую из планет можно охарактеризовать по девяти основным параметрам. Это такие параметры, как расстоя­ние от Солнца, период обращения вокруг Солнца, период обращения вокруг своей оси, средняя плотность (г/см3), диаметр экватора в километрах, относительная масса (масса Земли принимается за 1), температура поверхно­сти, число спутников, преобладание газа в атмосфере.

Ближайшей к Солнцу планетой является Меркурий. Он состоит из большого железного ядра, расплавленной каменистой мантии и твердой коры. По внешнему виду Меркурий напоминает Луну. Его поверхность испещрена кратерами и огромными уступами (высотой до 3 км), сформировавшимися в результате остывания и сжатия поверхности планеты. Сила тяжести на Меркурии в два раза меньше земной, поэтому атмосфера практически отсутствует. Царят безмолвие и экстремальные температу­ры – до 350 ‘С на освещенной Солнцем стороне планеты и до -170 «С на ночной стороне.

Венера по размерам, массе и плотности сходна с Зем­лей. Однако она имеет очень плотную атмосферу, пропускающую солнечное излучение и не выпускающую его обратно. Поэтому на Венере давно действует парниковый эффект, который сейчас отмечается на Земле. В результате этого эффекта температура поверхности Венеры составляет 400-500 «С. Поверхность Венеры сияет так ярко, что Венера занимает 3-е место по яркости (после Солнца и Луны) среди всех видимых с Земли объектов.

Ближайшее к Земле небесное тело – ее спутник. Луна. Луна имеет небольшое ядро из железа и серы, окружен­ное полурасплавленной астеносферой. Над астеносферой расположена литосфера (твердая каменная оболочка), и над ней – кора из минералов, богатых кальцием и алюминием. Поверхность Луны изрыта кратерами, имеет огромные равнины (моря) и горы.

Планеты Солнечной системы (газовые). Вторая четверка планет (Юпитер, Сатурн, Уран, Нептун) – газообразные, большие, с плотностью 0,7-1,7 г/см’ (т. е. чуть меньше или чуть больше плотности воды). Юпитер является крупнейшей планетой Солнечной системы. Вместе со своими 16 спутниками он составляет Солнечную систему в миниатюре. Масса Юпитера в три раза превосходит массу всех остальных планет Солнечной системы.

В центре Юпитера находится небольшое каменное ядро. Его окружает вначале слой металлического водорода, по свойствам напоминающего жидкий металл, затем слой жидкого водорода. Плотная атмосфера Юпитера состоит из водорода, гелия, метана и аммиака и по толщине в 8-10 раз превосходит земную атмосферу. Если попытаться высадиться на Юпитер, то космический аппарат будет долго тонуть в атмосфере, однако посадки так и не произойдет. Из 16 спутников Юпитера наиболее известны четыре, открытые еще Галилеем. Это Ио, Европа, Ганимед и Каллисто. Ио по размерам чуть больше Луны. Мощные приливные силы Юпитера разогревают ядро Ио, и на этом спутнике идет активная вулканическая деятельность.

Сатурн известен своими кольцами. В начале 1980-х гг. с помощью космического зонда «Вояджер» было выяснено, что кольца состоят из огромного количества кусков льда различного размера – от пылинок до глыб. Помимо колец, Сатурн имеет 17 спутников, из которых Титан имеет плотную атмосферу. Сатурн имеет самую низкую плотность среди планет Солнечной системы. Его небольшое ядро из льда и камня окружено слоями металлического и жидкого водорода. В атмосфере Сатурна бушуют ветры, скорость которых достигает 1800 км/ч. Уран, Нептун и Плутон удалены настолько, что достоверной информации об их составе не удавалось получить до 1986 г. В 1986 г. космический зонд «Вояджер-2» передал фотографии Урана и Нептуна, по которым были установлены состав атмосферы и наличие вихрей, а также обнаружены спутники этих планет.

Кометы, астероиды, метеорное вещество. Помимо девяти крупных спутников (планет), Солнце имеет множество мелких спутников, называемых астероидами. Большинство из них находится в поясе астероидов, между орбитами Марса и Юпитера. Есть также группа астероидов (Троянцы и Греки), движущаяся вдоль орбиты Юпитера, и другие группы. Всего в астрономических ка­талогах зафиксировано более 6000 малых планет.

Помимо астероидов, движущихся по орбитам, подобным орбитам планет, Солнечную систему пересекают ко­меты. Орбиты комет одним фаем приближены к Солнцу, другим удалены от него иногда на очень значительные расстояния. Например, удаленный край орбиты кометы Энке с периодом обращения 3,3 года не достигает орбиты Юпитера. Орбита кометы Галлея с периодом обращения 76 лет не достигает орбиты Плутона. Орбита кометы Когоутека с периодом обращения 75 000 лет выходит далеко за пределы орбиты Плутона.

По современным гипотезам кометы представляют собой огромные глыбы из льда и камня, которые испаряются при подходе к Солнцу и образуют газовый и пылевой хвосты, направленные от Солнца. Со временем кометы рассыпаются, оставляя после себя облака пыли. Ежегодно в августе Земля проходит через полосу пыли, оставшуюся от кометы Свифта-Тутля, и в эти периоды можно наблюдать метеорные дожди, называемые «Персеидами». Землю ежесекундно бомбардируют тысячи метеори­тов – обломков космических тел. Однако большинство из них сгорают в атмосфере, не достигая поверхности Зем­ли. Крупные метеориты могут взрываться, оставляя кра­теры. Средние и мелкие метеориты, закаленные огнем и космическим пространством, часто служат объектами поклонения (священные камни) верующих.

kursak.net

Вселенная, Галактика и Солнечная система


Министерство высшего и среднего

специального образования

республики Узбекистан

Ташкентский государственный

Технический Университет

имени Абу Райхана Беруни
Тема: Вселленная, Галактика и Солнечная система.
                                      
                                                  Выполнил: студент ИЭФ группы 1-01  МН(У)

                                                                       Домлатжанов Умид

                                                  
ТАШКЕНТ — 2002

  На протяжении последних триста лет, начиная от Рене Декарта (1596-1650), было высказано несколько десятков космогонических гипотез, в которых рассмотрены самые разнообразные варианты ранней истории Солнечной системы.

  Говоря о далёких объектах Вселенной, астрономы обычно жалуются, что во многих случаях имеется слишком мало данных, чтобы осветить развитие объектов. Здесь же можно сказать, что всё обстоит как раз наоборот — данных слишком много.

  Исторически первой гипотезой о происхождении планет была гипотеза Декарта (1644 г.). Декарт предположил, что все мировые пространства заполнено всепроницающей жидкостью, частицы которой находятся в вихреобразном движении. Каждая планета, по Декарту, как соломинка в водовороте, движется в собственном вихре. Так же он объяснял и движение планет по орбитам. «Обновленную» теорию вихрей использовал в планетной космогонии. Тер Хаар (1938 г.) и К. Вейцзекер.

  В 1745 г. французский учёный Бюффон высказал предположение, что планеты образовались из вещества, выброшенного из Солнца при его встрече с кометой. Гипотеза «встречи» Солнца с другим небесным телом — звездой пользовалась популярностью у многих учёных от Бикертона (1878 г.) до Джинса (1916 г.).

  Немецкий философ И. Кант (1724-1804) в своей книге «естественная Всеобщая история и теория неба» (1755 г.) развил гипотезу, согласно которой в начале мировое пространство было заполнено материей, находящейся в состоянии первозданного хаоса. Под действием двух сил — притяжения и отталкивания — материя со временем переходила в более организованные формы. Солнце и окружающие его планеты образовались в результате слипания пылинок первичного вещества.

  Совершенно другая гипотеза была изложена в книге французского учёного Лапласа «Изложение системы мира», которая вышла в свет в 1796 г. По Лапласу, на ранней стадии своего развития Солнце представляло собой огромную медленно вращающуюся раскаленную туманность. Под действием Силы тяжести протосолнце сжималось, а скорость его вращения всё увеличивалась, поэтому оно приобретало сплюснутую форму. И как только на экваторе сила тяжести уравновешивалась центробежной силой, от протосолнца отделялось гигантское кольцо, которое в дальнейшем охлаждалось и разрывалось на отдельные сгустки. Из них будто бы и формировалась планета. Такой отрыв колец от протосолнца, по Лапласу, происходил несколько раз. Аналогичным путём будто бы образовались и спутники планет.

  В 1935 г. Г. Рессел предположил, что Солнце было двойной звездой. Одна из компонент будто бы была разорвана встречной звездой и образовала волокно, из которого позже сформировались планеты. Год, спустя Литлон предположил, что Солнце было тройной звездой. Две из них будто бы столкнулись и удалились в межзвёздное пространство, оставляя «строительный материал». В 1944 г. Ф. Хойл высказал предположение, что Солнце в своё время было двойной звездой, причём одна из них вспыхнула как сверхновая, сбросила газовую оболочку и оставила систему.

  В общем, говоря гипотез, было не мало, но на самом деле современная гипотеза говорит о том, что планеты и Солнце образовались из одного и того же газопылевого облака. Предполагается что около пяти миллиардов лет назад в протяжённом газопылевом облаке, пронизанном магнитными линиями, образовались сгущения — протосолнце, которое медленно сжималось. Другая часть облака с массой примерно в десять раз меньше этой, медленно вращалось вокруг него. В результате постепенно сплющивалась и разогревалась. Так вокруг протосолнца образовался протяжённый диск, пронизанный магнитными силовыми линиями. В значительной его части происходило интенсивное конвективно-турбулентное перемешивание вещества. Это благоприятствовало быстрому переносу энергии, освобождающейся при гравитационном сжатии облака, на бесконечность. В результате этого газопылевой диск существенно охлаждался. 

  Под действием светового давления легкие химические элементы водород и гелий «выметались» из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Этот механизм торможения «работает» даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы.

  После достижения «критической» плотности пылевой диск, в соответствие с критерием гравитационной неустойчивости, распадался на отдельные сгущения. Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твёрдых тел, для которых американский биолог Т. Чемберлен ещё в 1901 г. ввёл название «планетезимали».

  По оценкам В. С. Сафронова, превращение системы сгущений пыли в рой твёрдых тел продолжалось всего 10000 лет на расстоянии Земли от Солнца и около 1000000 лет на расстоянии Юпитера. При этом масса планетезималий в области планет земной группы была значительна меньше, чем в области планетегигантов.

  Всё это время протосолнце проявляло очень высокую активность. При мощных вспышках оно выбрасывало потоки заражённых частиц, которые, двигаясь вдоль магнитных силовых линий, переносили момент количества движения от Солнца к протопланетному облаку. Кроме того, благодаря столкновениям высокоэнергичных, лёгких частиц (протонов и нейтронов) с веществом протопланетного облака, происходили определённые ядерные реакции. Именно таким путём и образовался большой избыток лёгких химических элементов — лития, бериллия и бора, которых в земной коре и метеоритах значительно больше, чем в атмосфере Солнца.

  В результате взаимных столкновений планетезималий происходил рост одних и дробление других. Со временем орбиты крупнейших из них приближались к круговым орбитам, а сами они превращались в зародыши планет, объединяя всё окружающее вещество. Расчёты показывают, что рост Земли до современных размеров продолжался всего 100 млрд. лет.

  Выпадение отдельных сгущений на Землю и её сжатие привели к постепенному разогреву её недр. На момент сформирования Земли температура в её центре не превышала 800 К, на поверхности 300 К, а на глубине 300-500 км — около 1500 К. Со временем всё большую роль здесь играли процессы радиоактивного распада, при котором выделялось значительное количество энергии. В результате этого отдельные области земных недр разогрелись до температуры плавления. Наступила продолжительная фаза гравитационной дифференциации вещества: Тяжёлые химические элементы и соединения опускались вниз, лёгкие — поднимались вверх. Этот начальный этап формирования земной коры продолжался около 1 млрд. лет.

  На ранней стадии своего развития протоземля была окружена облаком небольших спутников, радиусы которых достигали 100 км. Со временем из них на расстоянии около 10 земных радиусов (60000 км) сформировалась Луна. Одновременно началось её медленное удаление то Земли, которое продолжается и теперь. Оно сопровождается уменьшением скорости вращения Земли вокруг её оси.

  И всё же уже сейчас можно вполне уверенно говорить о том, что планеты и Солнце образовались из одного газопылевого облака и что сами планеты сформировались из роя холодных и твердых тел.

  Нет на Земле человека, который, вглядываясь в звёздное небо, не чувствовал бы всей его красоты и величия, который не испытывал бы желания познать его тайны.

  Успехи астрономии и космонавтики «приблизили» нас к звёздам. Сегодня каждый взгляд человека в небо наполняется конкретным содержанием: где-то там через причудливую мозаику из ярких звёзд прокладывает свой путь очередной пилотируемый космический корабль, в другом созвездии расположен интереснейший пульсар, в третьем — не менее знаменитая галактика или квазар.

  Сейчас на звёздном небе выделено около 100 созвездий. Они имеют точно указанные на карте неба границы. 235 звёзд, кроме буквенных обозначений, имеют собственные названия, которые в подавляющем большинстве случаев перешли от арабских астрономов.

   Наблюдая за годичным перемещением Солнца среди звёзд, древние люди научились заблаговременно определять наступления того или другого времени года. Они разделяли полосу неба вдоль эклиптики на 12 созвездий (Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей и Рыба), в каждом из которых Солнце находится примерно месяц. Как уже отмечалось, эти созвездия были названы зодиакальными (строго говоря, двигаясь от созвездия, Скорпион в созвездие Стрельца Солнце проходит и через 13-е созвездие — Змееносец!). 

  Ещё за 2000 лет до нашей эры древние наблюдатели заметили среди зодиакальных созвездий пять особых светил, которые, постоянно меняя своё положение на небе, переходят из одного зодиакального созвездия в другое. Впоследствии греческие астрономы называли эти светила планетами, т. е. «блуждающими». Это Меркурий, Венера, Марс, Юпитер и Сатурн, сохранившие в своих названиях до наших дней имена древнеримских богов. Луна и Солнце тоже считались блуждающими светилами.

  Вероятно, прошло много столетий, прежде чем древним астрономам удалось установить определённые закономерности в движении планет и, прежде всего, установить промежутки времени, по истечению которых положение планеты на небе по отношению к Солнцу повторяется. Этот промежуток времени позже был назван синодическим (от греческого синодос — сближение) периодом обращение планеты. После этого можно было делать следующий шаг — строить общую модель мира, в которой для каждой из планет было бы отведено определённое место, и пользуясь которой можно было бы заранее предсказать положение планеты на несколько месяцев или лет вперёд.

  Постепенно, веками астрономия всё усложнялась, и самый первый человек, который заявил и написал, что Земля крутится вокруг Солнца, был великий польский математик, физик и астроном Николай Коперник (1473-1543). Он создал своё бессмертное творение — книгу «О вращениях небесных тел», этим он первым основал гелиоцентрическую систему. После исследования Вселенной с помощью телескопов были начаты Галилео Галилеем (1564-1642) в 1602-1610 гг. Телескопы Галилея были небольшими, один из лучших имел диаметр объектива 5,3 см и фокусное расстояние 124,5 см. Но уже и с такими небольшими инструментами был сделан крупный шаг вперёд в раскрытии тайн мироздания. На поверхности Луны Галилей обнаружил неровности — горы, долины и кратеры, он открыл спутники Юпитера и фазы Венеры.

  Долгий и кропотливый путь прошла наука, прежде чем была установлена структура окружающей нас Вселенной. Только в начале 20 века было окончательно доказано, что все видимые на небе звёзды образуют обособленную звёздную систему — Галактику.

  Постепенно выяснилось, что звёзды Млечного Пути — светлой серебристой полосы, опоясывающей всё небо, составляют основную часть нашей сильно сплющенной системы — Галактики. Так как полоса Млечного Пути опоясывают небо по большому кругу, то мы находимся вблизи его плоскости, которую называют галактической. Дальше всего Галактика простирается вдоль этой области. В перпендикулярном ей направлении плотность звёзд быстро падает, следовательно, Галактика в этом направлении простирается не так далеко.

  Иногда неудачно говорят, что Млечный Путь — это и есть наша Галактика. Млечный Путь — это видимое нами на небе Светлое кольцо, а наша Галактика — это гигантский звёздный остров. Большинство её звёзд находится в полосе Млечного Пути, но ими она не исчерпывается. В Галактику входят звёзды всех созвездий. Подсчитано, что число звёзд 21-й величины и всех, более ярких на всём небе составляет около 2*10^9, но это лишь небольшая часть звёздного «населения» нашей звёздной системы — Галактики.

  Размеры Галактики были намечены по расположению звёзд, которые видны на больших расстояниях. Это цефеиды и горячие сверхгиганты. Диаметр Галактики можно принять примерно равным 30000 пк, или 100000 световых лет, но чёткой границы у неё нет, так как звёздная плотность в Галактике постепенно сходит на нет.

  В центре Галактики находится ядро диаметром 1000 — 2000 пк — огромное уплотнённое скопление звёзд. Оно расположено от нас на расстоянии почти 10000 пк (30000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто завесой облаков, содержащих космическую пыль.

  В состав ядра Галактики входит много красных гигантов и короткопериодических цефеид. Звёзды верхней части главной последовательности, а особенно сверхгиганты и классические цефеиды, составляют более молодое население. Оно располагается дальше от центра и образует сравнительно тонкий слой, или диск. Среди звёзд этого диска расположена пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

  Все звёзды Галактики обращаются вокруг её центра. Угловая скорость обращения звёзд во внутренней области Галактики примерно одинакова, а внешние её части вращаются медленнее. Этим обращение звёзд в Галактике отличается от обращения планет в Солнечной системе, где и угловая, и линейная скорости быстро уменьшаются с увеличением радиуса орбиты. Это различие связано с тем, что ядро Галактики не преобладает в ней по массе, как Солнце в Солнечной системе.

  Солнечная система совершает полный оборот вокруг центра Галактики примерно за 200 млн. лет со скоростью около 250 км/с. Направление, в котором движется Солнечная система, называется апексом движения. В направлении апекса звёзды в среднем приближаются к нам со скоростью 20 км/с, а в противоположном направлении, с такой же скоростью в среднем удаляются от нас. Итак, Солнечная система движется в направлении созвездий Лиры и Геркулеса со скоростью 20км/с по отношению к соседним звёздам.

  Звёзды, близкие друг к другу на небе, в пространстве могут быть расположены далеко друг от друга и двигаться с различными скоростями. Поэтому по истечении тысячелетий вид созвездий должен сильно меняться вследствие собственных движений звёзд.

  Астрономы нашли множество гигантских звёздных систем за пределами нашей Галактики, им дали нарицательное название галактик в отличие от нашей Галактики. По своему внешнему виду галактики делятся на спиральные, неправильные и эллиптические. Большинство наблюдаемых галактик спиральные. Наша Галактика и галактика в созвездии Андромеды относятся к числу спиральных галактик очень большого размера. Все спиральные галактики вращаются с периодами в несколько сот миллионов лет. Массы их составляют 10

coolreferat.com

Вселенная, Галактика и Солнечная система

Министерство высшего и среднего

специального образования

республики Узбекистан

Ташкентский государственный

Технический Университет

имени Абу Райхана Беруни

Тема: Вселленная, Галактика и Солнечная система.

Выполнил: студент ИЭФ группы 1-01 МН(У)

Домлатжанов Умид

ТАШКЕНТ — 2002

На протяжении последних триста лет, начиная от Рене Декарта (1596-1650), было высказано несколько десятков космогонических гипотез, в которых рассмотрены самые разнообразные варианты ранней истории Солнечной системы.

Говоря о далёких объектах Вселенной, астрономы обычно жалуются, что во многих случаях имеется слишком мало данных, чтобы осветить развитие объектов. Здесь же можно сказать, что всё обстоит как раз наоборот — данных слишком много.

Исторически первой гипотезой о происхождении планет была гипотеза Декарта (1644 г.). Декарт предположил, что все мировые пространства заполнено всепроницающей жидкостью, частицы которой находятся в вихреобразном движении. Каждая планета, по Декарту, как соломинка в водовороте, движется в собственном вихре. Так же он объяснял и движение планет по орбитам. «Обновленную» теорию вихрей использовал в планетной космогонии. Тер Хаар (1938 г.) и К. Вейцзекер.

В 1745 г. французский учёный Бюффон высказал предположение, что планеты образовались из вещества, выброшенного из Солнца при его встрече с кометой. Гипотеза «встречи» Солнца с другим небесным телом — звездой пользовалась популярностью у многих учёных от Бикертона (1878 г.) до Джинса (1916 г.).

Немецкий философ И. Кант (1724-1804) в своей книге «естественная Всеобщая история и теория неба» (1755 г.) развил гипотезу, согласно которой в начале мировое пространство было заполнено материей, находящейся в состоянии первозданного хаоса. Под действием двух сил — притяжения и отталкивания — материя со временем переходила в более организованные формы. Солнце и окружающие его планеты образовались в результате слипания пылинок первичного вещества.

Совершенно другая гипотеза была изложена в книге французского учёного Лапласа «Изложение системы мира», которая вышла в свет в 1796 г. По Лапласу, на ранней стадии своего развития Солнце представляло собой огромную медленно вращающуюся раскаленную туманность. Под действием Силы тяжести протосолнце сжималось, а скорость его вращения всё увеличивалась, поэтому оно приобретало сплюснутую форму. И как только на экваторе сила тяжести уравновешивалась центробежной силой, от протосолнца отделялось гигантское кольцо, которое в дальнейшем охлаждалось и разрывалось на отдельные сгустки. Из них будто бы и формировалась планета. Такой отрыв колец от протосолнца, по Лапласу, происходил несколько раз. Аналогичным путём будто бы образовались и спутники планет.

В 1935 г. Г. Рессел предположил, что Солнце было двойной звездой. Одна из компонент будто бы была разорвана встречной звездой и образовала волокно, из которого позже сформировались планеты. Год, спустя Литлон предположил, что Солнце было тройной звездой. Две из них будто бы столкнулись и удалились в межзвёздное пространство, оставляя «строительный материал». В 1944 г. Ф. Хойл высказал предположение, что Солнце в своё время было двойной звездой, причём одна из них вспыхнула как сверхновая, сбросила газовую оболочку и оставила систему.

В общем, говоря гипотез, было не мало, но на самом деле современная гипотеза говорит о том, что планеты и Солнце образовались из одного и того же газопылевого облака. Предполагается что около пяти миллиардов лет назад в протяжённом газопылевом облаке, пронизанном магнитными линиями, образовались сгущения — протосолнце, которое медленно сжималось. Другая часть облака с массой примерно в десять раз меньше этой, медленно вращалось вокруг него. В результате постепенно сплющивалась и разогревалась. Так вокруг протосолнца образовался протяжённый диск, пронизанный магнитными силовыми линиями. В значительной его части происходило интенсивное конвективно-турбулентное перемешивание вещества. Это благоприятствовало быстрому переносу энергии, освобождающейся при гравитационном сжатии облака, на бесконечность. В результате этого газопылевой диск существенно охлаждался.

Под действием светового давления легкие химические элементы водород и гелий «выметались» из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Этот механизм торможения «работает» даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы.

После достижения «критической» плотности пылевой диск, в соответствие с критерием гравитационной неустойчивости, распадался на отдельные сгущения. Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твёрдых тел, для которых американский биолог Т. Чемберлен ещё в 1901 г. ввёл название «планетезимали».

По оценкам В. С. Сафронова, превращение системы сгущений пыли в рой твёрдых тел продолжалось всего 10000 лет на расстоянии Земли от Солнца и около 1000000 лет на расстоянии Юпитера. При этом масса планетезималий в области планет земной группы была значительна меньше, чем в области планетегигантов.

Всё это время протосолнце проявляло очень высокую активность. При мощных вспышках оно выбрасывало потоки заражённых частиц, которые, двигаясь вдоль магнитных силовых линий, переносили момент количества движения от Солнца к протопланетному облаку. Кроме того, благодаря столкновениям высокоэнергичных, лёгких частиц (протонов и нейтронов) с веществом протопланетного облака, происходили определённые ядерные реакции. Именно таким путём и образовался большой избыток лёгких химических элементов — лития, бериллия и бора, которых в земной коре и метеоритах значительно больше, чем в атмосфере Солнца.

В результате взаимных столкновений планетезималий происходил рост одних и дробление других. Со временем орбиты крупнейших из них приближались к круговым орбитам, а сами они превращались в зародыши планет, объединяя всё окружающее вещество. Расчёты показывают, что рост Земли до современных размеров продолжался всего 100 млрд. лет.

Выпадение отдельных сгущений на Землю и её сжатие привели к постепенному разогреву её недр. На момент сформирования Земли температура в её центре не превышала 800 К, на поверхности 300 К, а на глубине 300-500 км — около 1500 К. Со временем всё большую роль здесь играли процессы радиоактивного распада, при котором выделялось значительное количество энергии. В результате этого отдельные области земных недр разогрелись до температуры плавления. Наступила продолжительная фаза гравитационной дифференциации вещества: Тяжёлые химические элементы и соединения опускались вниз, лёгкие — поднимались вверх. Этот начальный этап формирования земной коры продолжался около 1 млрд. лет.

На ранней стадии своего развития протоземля была окружена облаком небольших спутников, радиусы которых достигали 100 км. Со временем из них на расстоянии около 10 земных радиусов (60000 км) сформировалась Луна. Одновременно началось её медленное удаление то Земли, которое продолжается и теперь. Оно сопровождается уменьшением скорости вращения Земли вокруг её оси.

И всё же уже сейчас можно вполне уверенно говорить о том, что планеты и Солнце образовались из одного газопылевого облака и что сами планеты сформировались из роя холодных и твердых тел.

Нет на Земле человека, который, вглядываясь в звёздное небо, не чувствовал бы всей его красоты и величия, который не испытывал бы желания познать его тайны.

Успехи астрономии и космонавтики «приблизили» нас к звёздам. Сегодня каждый взгляд человека в небо наполняется конкретным содержанием: где-то там через причудливую мозаику из ярких звёзд прокладывает свой путь очередной пилотируемый космический корабль, в другом созвездии расположен интереснейший пульсар, в третьем — не менее знаменитая галактика или квазар.

Сейчас на звёздном небе выделено около 100 созвездий. Они имеют точно указанные на карте неба границы. 235 звёзд, кроме буквенных обозначений, имеют собственные названия, которые в подавляющем большинстве случаев перешли от арабских астрономов.

Наблюдая за годичным перемещением Солнца среди звёзд, древние люди научились заблаговременно определять наступления того или другого времени года. Они разделяли полосу неба вдоль эклиптики на 12 созвездий (Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей и Рыба), в каждом из которых Солнце находится примерно месяц. Как уже отмечалось, эти созвездия были названы зодиакальными (строго говоря, двигаясь от созвездия, Скорпион в созвездие Стрельца Солнце проходит и через 13-е созвездие — Змееносец!).

Ещё за 2000 лет до нашей эры древние наблюдатели заметили среди зодиакальных созвездий пять особых светил, которые, постоянно меняя своё положение на небе, переходят из одного зодиакального созвездия в другое. Впоследствии греческие астрономы называли эти светила планетами, т. е. «блуждающими». Это Меркурий, Венера, Марс, Юпитер и Сатурн, сохранившие в своих названиях до наших дней имена древнеримских богов. Луна и Солнце тоже считались блуждающими светилами.

Вероятно, прошло много столетий, прежде чем древним астрономам удалось установить определённые закономерности в движении планет и, прежде всего, установить промежутки времени, по истечению которых положение планеты на небе по отношению к Солнцу повторяется. Этот промежуток времени позже был назван синодическим (от греческого синодос — сближение) периодом обращение планеты. После этого можно было делать следующий шаг — строить общую модель мира, в которой для каждой из планет было бы отведено определённое место, и пользуясь которой можно было бы заранее предсказать положение планеты на несколько месяцев или лет вперёд.

mirznanii.com

Вселенная, Галактика, Солнечная система, планеты. Основные гипотезы происхождения и эволюции

Группа III: Mg, Fe, Si (около 0,25% массы Солнца).

Планеты земной группы: Меркурий, Венера, Земля, Марс и астероиды – обладают значительной плотностью ( ρ = 3,9−5,5г/см3, табл. 1.1)и состоят преимущественно из Mg,

Fe и Si. Планеты-гигантыЮпитер, Сатурн, Уран и Нептун значительно крупнее планет земной группы, их плотность существенно меньше (ρ = 0,7−1,6г/см3, табл. 1.1), и

поэтому они должны состоять главным образом из Н и Не. Возможно, их общий состав мало отличается от состава Солнца или первичной околосолнечной туманности. Состав Урана и Нептуна, плотности которых имеют промежуточные значения, в основном могут определяться твердыми соединениями II группы элементов: метаном, аммиаком и льдом. Во время формирования планет внутри солнечного облака должна была происходить сильная химическая дифференциация. Менее летучие элементы III группы должны были выделяться из облака в окрестностях планет земной группы, когда облако вытягивалось под действием магнитных или иных сил. Тогда же водород и гелий, составляющие свыше 90% всей первоначальной массы облака, интенсивно улетучивались в окружающее пространство в окрестностях Урана и Нептуна. Механизм этого «выдувания» не ясен.

Анализ содержания некоторых изотопов в метеоритах позволил оценить возраст Галактики. Верхний предел величины интервала времени от завершения синтеза тяжелых элементов (или взрыва сверхновой?) до образования родительских метеоритных тел оценивается в 200 млн лет. Отсюда можно заключить, что взрыв сверхновой мог произойти вблизи будущего солнечного облака менее чем за 200млн лет до образования солнечной системы. Взрыв мог также сыграть роль спускового механизма для начала конденсации в облаке.

Подытожим те стадии, через которые, возможно, прошла солнечная система. Первые пять стадий могли совпадать во времени.

Вращающееся Солнце сжималось, и поэтому его угловая скорость постепенно увеличивалась. При этом вращающийся газопылевой диск вытягивался в экваториальной плоскости. Возможно, околосолнечное облако образовалось после того, как вещество было выброшено с солнечного экватора, когда центробежная сила превысила силы тяготения (как впервые предположил Лаплас), или же облако могло образоваться в результате иных процессов.

Момент количества движения был передан от Солнца к облаку; вращение Солнца замедлилось, и облако расширилось, охватив местоположение будущих планет. Этот процесс мог произойти в результате взаимодействия магнитного поля Солнца (порядка 1 Гс) с ионизованной частью облака или же вследствие турбулентной конвекции в облаке.

С переносом наружу момента количества движения связана потеря энергии вращения, что могло произойти вследствие излучения облаком частиц высокой энергии при внезапных возмущениях магнитного поля. При этом могли образоваться легкие

элементы, например, литий, и некоторые короткоживущие, радиоактивные изотопы, скажем Al26.

При интенсивном истечении первичных водорода и гелия в окружающее пространство в районе расположения внешних планет в газопылевом облаке началась химическая дифференциация; при конденсации в области образования будущих планет земной группы выделились кремний, железо и магний.

По мере охлаждения околосолнечное облако конденсировалось в пылинки и более крупные частицы, двигавшиеся по эллиптическим орбитам вокруг Солнца в его поле тяготения.

Частицы с близкими орбитами сталкивались и слипались, постепенно вырастая до размеров достаточно крупных тел. Однако механизм, заставивший частицы объединяться на ранней стадии аккреции, остается неясным. Когда тела достигли размеров 1 км и больше, процесс столкновений и слипания усилился за счет тяготения. В конечном счете, образовались тела с размерами планет, их спутников и астероидов. Большая часть

studfiles.net

Вселенная, Галактика и Солнечная система


Министерство высшего и среднего

специального образования

республики Узбекистан

Ташкентский государственный

Технический Университет

имени Абу Райхана Беруни
Тема: Вселленная, Галактика и Солнечная система.
                                      
                                                  Выполнил: студент ИЭФ группы 1-01  МН(У)

                                                                       Домлатжанов Умид

                                                  
ТАШКЕНТ — 2002

  На протяжении последних триста лет, начиная от Рене Декарта (1596-1650), было высказано несколько десятков космогонических гипотез, в которых рассмотрены самые разнообразные варианты ранней истории Солнечной системы.

  Говоря о далёких объектах Вселенной, астрономы обычно жалуются, что во многих случаях имеется слишком мало данных, чтобы осветить развитие объектов. Здесь же можно сказать, что всё обстоит как раз наоборот — данных слишком много.

  Исторически первой гипотезой о происхождении планет была гипотеза Декарта (1644 г.). Декарт предположил, что все мировые пространства заполнено всепроницающей жидкостью, частицы которой находятся в вихреобразном движении. Каждая планета, по Декарту, как соломинка в водовороте, движется в собственном вихре. Так же он объяснял и движение планет по орбитам. «Обновленную» теорию вихрей использовал в планетной космогонии. Тер Хаар (1938 г.) и К. Вейцзекер.

  В 1745 г. французский учёный Бюффон высказал предположение, что планеты образовались из вещества, выброшенного из Солнца при его встрече с кометой. Гипотеза «встречи» Солнца с другим небесным телом — звездой пользовалась популярностью у многих учёных от Бикертона (1878 г.) до Джинса (1916 г.).

  Немецкий философ И. Кант (1724-1804) в своей книге «естественная Всеобщая история и теория неба» (1755 г.) развил гипотезу, согласно которой в начале мировое пространство было заполнено материей, находящейся в состоянии первозданного хаоса. Под действием двух сил — притяжения и отталкивания — материя со временем переходила в более организованные формы. Солнце и окружающие его планеты образовались в результате слипания пылинок первичного вещества.

  Совершенно другая гипотеза была изложена в книге французского учёного Лапласа «Изложение системы мира», которая вышла в свет в 1796 г. По Лапласу, на ранней стадии своего развития Солнце представляло собой огромную медленно вращающуюся раскаленную туманность. Под действием Силы тяжести протосолнце сжималось, а скорость его вращения всё увеличивалась, поэтому оно приобретало сплюснутую форму. И как только на экваторе сила тяжести уравновешивалась центробежной силой, от протосолнца отделялось гигантское кольцо, которое в дальнейшем охлаждалось и разрывалось на отдельные сгустки. Из них будто бы и формировалась планета. Такой отрыв колец от протосолнца, по Лапласу, происходил несколько раз. Аналогичным путём будто бы образовались и спутники планет.

  В 1935 г. Г. Рессел предположил, что Солнце было двойной звездой. Одна из компонент будто бы была разорвана встречной звездой и образовала волокно, из которого позже сформировались планеты. Год, спустя Литлон предположил, что Солнце было тройной звездой. Две из них будто бы столкнулись и удалились в межзвёздное пространство, оставляя «строительный материал». В 1944 г. Ф. Хойл высказал предположение, что Солнце в своё время было двойной звездой, причём одна из них вспыхнула как сверхновая, сбросила газовую оболочку и оставила систему.

  В общем, говоря гипотез, было не мало, но на самом деле современная гипотеза говорит о том, что планеты и Солнце образовались из одного и того же газопылевого облака. Предполагается что около пяти миллиардов лет назад в протяжённом газопылевом облаке, пронизанном магнитными линиями, образовались сгущения — протосолнце, которое медленно сжималось. Другая часть облака с массой примерно в десять раз меньше этой, медленно вращалось вокруг него. В результате постепенно сплющивалась и разогревалась. Так вокруг протосолнца образовался протяжённый диск, пронизанный магнитными силовыми линиями. В значительной его части происходило интенсивное конвективно-турбулентное перемешивание вещества. Это благоприятствовало быстрому переносу энергии, освобождающейся при гравитационном сжатии облака, на бесконечность. В результате этого газопылевой диск существенно охлаждался. 

  Под действием светового давления легкие химические элементы водород и гелий «выметались» из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Этот механизм торможения «работает» даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы.

  После достижения «критической» плотности пылевой диск, в соответствие с критерием гравитационной неустойчивости, распадался на отдельные сгущения. Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твёрдых тел, для которых американский биолог Т. Чемберлен ещё в 1901 г. ввёл название «планетезимали».

  По оценкам В. С. Сафронова, превращение системы сгущений пыли в рой твёрдых тел продолжалось всего 10000 лет на расстоянии Земли от Солнца и около 1000000 лет на расстоянии Юпитера. При этом масса планетезималий в области планет земной группы была значительна меньше, чем в области планетегигантов.

  Всё это время протосолнце проявляло очень высокую активность. При мощных вспышках оно выбрасывало потоки заражённых частиц, которые, двигаясь вдоль магнитных силовых линий, переносили момент количества движения от Солнца к протопланетному облаку. Кроме того, благодаря столкновениям высокоэнергичных, лёгких частиц (протонов и нейтронов) с веществом протопланетного облака, происходили определённые ядерные реакции. Именно таким путём и образовался большой избыток лёгких химических элементов — лития, бериллия и бора, которых в земной коре и метеоритах значительно больше, чем в атмосфере Солнца.

  В результате взаимных столкновений планетезималий происходил рост одних и дробление других. Со временем орбиты крупнейших из них приближались к круговым орбитам, а сами они превращались в зародыши планет, объединяя всё окружающее вещество. Расчёты показывают, что рост Земли до современных размеров продолжался всего 100 млрд. лет.

  Выпадение отдельных сгущений на Землю и её сжатие привели к постепенному разогреву её недр. На момент сформирования Земли температура в её центре не превышала 800 К, на поверхности 300 К, а на глубине 300-500 км — около 1500 К. Со временем всё большую роль здесь играли процессы радиоактивного распада, при котором выделялось значительное количество энергии. В результате этого отдельные области земных недр разогрелись до температуры плавления. Наступила продолжительная фаза гравитационной дифференциации вещества: Тяжёлые химические элементы и соединения опускались вниз, лёгкие — поднимались вверх. Этот начальный этап формирования земной коры продолжался около 1 млрд. лет.

  На ранней стадии своего развития протоземля была окружена облаком небольших спутников, радиусы которых достигали 100 км. Со временем из них на расстоянии около 10 земных радиусов (60000 км) сформировалась Луна. Одновременно началось её медленное удаление то Земли, которое продолжается и теперь. Оно сопровождается уменьшением скорости вращения Земли вокруг её оси.

  И всё же уже сейчас можно вполне уверенно говорить о том, что планеты и Солнце образовались из одного газопылевого облака и что сами планеты сформировались из роя холодных и твердых тел.

  Нет на Земле человека, который, вглядываясь в звёздное небо, не чувствовал бы всей его красоты и величия, который не испытывал бы желания познать его тайны.

  Успехи астрономии и космонавтики «приблизили» нас к звёздам. Сегодня каждый взгляд человека в небо наполняется конкретным содержанием: где-то там через причудливую мозаику из ярких звёзд прокладывает свой путь очередной пилотируемый космический корабль, в другом созвездии расположен интереснейший пульсар, в третьем — не менее знаменитая галактика или квазар.

  Сейчас на звёздном небе выделено около 100 созвездий. Они имеют точно указанные на карте неба границы. 235 звёзд, кроме буквенных обозначений, имеют собственные названия, которые в подавляющем большинстве случаев перешли от арабских астрономов.

   Наблюдая за годичным перемещением Солнца среди звёзд, древние люди научились заблаговременно определять наступления того или другого времени года. Они разделяли полосу неба вдоль эклиптики на 12 созвездий (Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей и Рыба), в каждом из которых Солнце находится примерно месяц. Как уже отмечалось, эти созвездия были названы зодиакальными (строго говоря, двигаясь от созвездия, Скорпион в созвездие Стрельца Солнце проходит и через 13-е созвездие — Змееносец!). 

  Ещё за 2000 лет до нашей эры древние наблюдатели заметили среди зодиакальных созвездий пять особых светил, которые, постоянно меняя своё положение на небе, переходят из одного зодиакального созвездия в другое. Впоследствии греческие астрономы называли эти светила планетами, т. е. «блуждающими». Это Меркурий, Венера, Марс, Юпитер и Сатурн, сохранившие в своих названиях до наших дней имена древнеримских богов. Луна и Солнце тоже считались блуждающими светилами.

  Вероятно, прошло много столетий, прежде чем древним астрономам удалось установить определённые закономерности в движении планет и, прежде всего, установить промежутки времени, по истечению которых положение планеты на небе по отношению к Солнцу повторяется. Этот промежуток времени позже был назван синодическим (от греческого синодос — сближение) периодом обращение планеты. После этого можно было делать следующий шаг — строить общую модель мира, в которой для каждой из планет было бы отведено определённое место, и пользуясь которой можно было бы заранее предсказать положение планеты на несколько месяцев или лет вперёд.

  Постепенно, веками астрономия всё усложнялась, и самый первый человек, который заявил и написал, что Земля крутится вокруг Солнца, был великий польский математик, физик и астроном Николай Коперник (1473-1543). Он создал своё бессмертное творение — книгу «О вращениях небесных тел», этим он первым основал гелиоцентрическую систему. После исследования Вселенной с помощью телескопов были начаты Галилео Галилеем (1564-1642) в 1602-1610 гг. Телескопы Галилея были небольшими, один из лучших имел диаметр объектива 5,3 см и фокусное расстояние 124,5 см. Но уже и с такими небольшими инструментами был сделан крупный шаг вперёд в раскрытии тайн мироздания. На поверхности Луны Галилей обнаружил неровности — горы, долины и кратеры, он открыл спутники Юпитера и фазы Венеры.

  Долгий и кропотливый путь прошла наука, прежде чем была установлена структура окружающей нас Вселенной. Только в начале 20 века было окончательно доказано, что все видимые на небе звёзды образуют обособленную звёздную систему — Галактику.

  Постепенно выяснилось, что звёзды Млечного Пути — светлой серебристой полосы, опоясывающей всё небо, составляют основную часть нашей сильно сплющенной системы — Галактики. Так как полоса Млечного Пути опоясывают небо по большому кругу, то мы находимся вблизи его плоскости, которую называют галактической. Дальше всего Галактика простирается вдоль этой области. В перпендикулярном ей направлении плотность звёзд быстро падает, следовательно, Галактика в этом направлении простирается не так далеко.

  Иногда неудачно говорят, что Млечный Путь — это и есть наша Галактика. Млечный Путь — это видимое нами на небе Светлое кольцо, а наша Галактика — это гигантский звёздный остров. Большинство её звёзд находится в полосе Млечного Пути, но ими она не исчерпывается. В Галактику входят звёзды всех созвездий. Подсчитано, что число звёзд 21-й величины и всех, более ярких на всём небе составляет около 2*10^9, но это лишь небольшая часть звёздного «населения» нашей звёздной системы — Галактики.

  Размеры Галактики были намечены по расположению звёзд, которые видны на больших расстояниях. Это цефеиды и горячие сверхгиганты. Диаметр Галактики можно принять примерно равным 30000 пк, или 100000 световых лет, но чёткой границы у неё нет, так как звёздная плотность в Галактике постепенно сходит на нет.

  В центре Галактики находится ядро диаметром 1000 — 2000 пк — огромное уплотнённое скопление звёзд. Оно расположено от нас на расстоянии почти 10000 пк (30000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто завесой облаков, содержащих космическую пыль.

  В состав ядра Галактики входит много красных гигантов и короткопериодических цефеид. Звёзды верхней части главной последовательности, а особенно сверхгиганты и классические цефеиды, составляют более молодое население. Оно располагается дальше от центра и образует сравнительно тонкий слой, или диск. Среди звёзд этого диска расположена пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

  Все звёзды Галактики обращаются вокруг её центра. Угловая скорость обращения звёзд во внутренней области Галактики примерно одинакова, а внешние её части вращаются медленнее. Этим обращение звёзд в Галактике отличается от обращения планет в Солнечной системе, где и угловая, и линейная скорости быстро уменьшаются с увеличением радиуса орбиты. Это различие связано с тем, что ядро Галактики не преобладает в ней по массе, как Солнце в Солнечной системе.

  Солнечная система совершает полный оборот вокруг центра Галактики примерно за 200 млн. лет со скоростью около 250 км/с. Направление, в котором движется Солнечная система, называется апексом движения. В направлении апекса звёзды в среднем приближаются к нам со скоростью 20 км/с, а в противоположном направлении, с такой же скоростью в среднем удаляются от нас. Итак, Солнечная система движется в направлении созвездий Лиры и Геркулеса со скоростью 20км/с по отношению к соседним звёздам.

  Звёзды, близкие друг к другу на небе, в пространстве могут быть расположены далеко друг от друга и двигаться с различными скоростями. Поэтому по истечении тысячелетий вид созвездий должен сильно меняться вследствие собственных движений звёзд.

  Астрономы нашли множество гигантских звёздных систем за пределами нашей Галактики, им дали нарицательное название галактик в отличие от нашей Галактики. По своему внешнему виду галактики делятся на спиральные, неправильные и эллиптические. Большинство наблюдаемых галактик спиральные. Наша Галактика и галактика в созвездии Андромеды относятся к числу спиральных галактик очень большого размера. Все спиральные галактики вращаются с периодами в несколько сот миллионов лет. Массы их составляют 10

^10 — 10^11 масс Солнца.

  Ветви спиральных галактик, как и у нашей Галактики, состоят из горячих звёзд, цефеид, сверхгигантов, рассеянных звёздных скоплений и газовых туманностей. Галактики излучают радиоволны. Радиоизлучение исходит от нейтрального водорода на длине волны 21 см, а также от ионизованного горячего водорода в светлых туманностях. Нейтрального водорода в них содержится до 10% от массы галактики. Есть в галактиках и пыль. Её присутствие особенно хорошо заметно в тех из них, которые повёрнуты к нам ребром, поэтому похожи на веретено или чечевицу. Вдоль галактической плоскости у них проходит тёмная полоса — скопление пылевых туманностей.

  Во время экспедиции Магеллана в 16 веке наблюдаемые в южном полушарии неба два больших звёздных облака назвали Большим и Малым Магеллановыми Облаками. Эти галактики по их бесформенному виду относят к типу неправильных. Они являются спутниками нашей Галактики. Расстояние до них около 150000 световых лет. Их звёздный состав такой же, как и у ветвей спиральных галактик, а ядра нет. Неправильные галактики значительно меньше спиральных и встречаются редко.

  Эллиптические галактики наблюдаются часто. По виду они похожи на шаровые звёздные скопления, но гораздо больше их по размерам. Они вращаются крайне медленно и потому слабо сплюснуты в отличие от быстро вращающихся спиральных галактик. Эллиптические галактики не содержат ни звёзд-сверхгигантов, ни диффузных туманностей.

  Разнообразны и светимости галактик.

  У гигантских галактик абсолютная звёздная величина около — 21. Существуют галактики-карлики, в тысячи раз более слабые с абсолютной звёздной величиной около — 13.

  Некоторые галактики выделяются среди других особенно мощным синхротронным радиоизлучением, которое возникает при взаимодействии очень быстрых электронов с магнитным полем. Их назвали радиогалактиками. Чаще всего они имеют два очага радиоизлучения, расположенные по обе стороны галактики. Они возникли в результате активности ядер галактик, выбрасывающих в противоположные стороны быстрые потоки вещества.

  На месте некоторых радиоисточников на небе нашли объекты, неотличимые на фотографиях от очень неярких звёзд. Но как показали особенности их излучения, эти объекты не могут быть звёздами. В их спектре имеются яркие линии со значительным красным смещением. В некоторых случаях это линии газа, обычно наблюдаемые в ультрафиолетовой области спектра, смещённые в его видимую часть. Красное смещение их так велико, что ему соответствуют расстояния в миллиарды световых лет. Эти объекты, названные квазизвёздами (звездоподобными) источниками радиоизлучения или квазарами, являются самыми далёкими небесными телами, расстояния до которых удалось определить. Ярчайший из квазаров выглядит как звезда 13-й звёздной величины, но по светимости некоторые квазары в сотни раз ярче, чем гигантские галактики. Остаётся неясным происхождение колоссольных потоков энергии, излучаемой ими в оптическом и радиодиапазоне. Наблюдения свидетельствуют, что квазары сходны по своей природе с активными ядрами очень далёких звёздных систем.

  Галактики, бывают двойными, кратными, образуют группы и скопления. Большинство галактик сосредоточено в скоплениях. Скопления галактик, бывают рассеянными и шарообразными и содержат десятки, иногда тысячи членов. Ближайшее к нам скопление галактик и содержат десятки, иногда тысячи членов. Ближайшее к нам скопления галактик находится в созвездии Девы на расстоянии около 20 млн. пк.

  В последние годы было обнаружено, что в пространственном распределении галактик и их скоплений наблюдаются определённая закономерность — ячеисто-сотовая структура. Стенки этих ячеек, состоящие из множества галактик, имеют толщину 3 – 4  млн. пк, а размеры самих ячеек около 100 Мпк. Большие скопления галактик образуют узлы этих ячеек.

  Вся наблюдаемая система галактик и их скоплений называется — Метагалактикой.

Метагалактика — часть безграничной Вселенной.

  В Метагалактике действует закон красного смещения Хаббла, и признано, что это смещение действительно отражает особенности движения галактик, непрерывное увеличение расстояний между ними. Это означает, что галактики удаляются от нас (и друг от друга) во все стороны, и тем быстрее, чем они от нас дальше. Этот процесс захватывает всю наблюдаемую часть Вселенной, а возможно, и всю Вселенную, и потому его назвали расширением Вселенной.

  Наука, которая изучает Вселенную как единое целое, называется космологией. Большинство существующих космологических теорий опирается на теорию тяготения, физику элементарных частиц, общую теорию относительности и другие фундаментальные физические теории и, конечно, на астрономические наблюдения. В космологии широко используется метод моделирования, учёные строят теоретические модели Вселенной, ищут наблюдательные факты, на основе которых можно проверить правильность теоретических выводов. Применение ЭВМ позволяет проводить необходимые при этом расчёты. В частности, такие расчеты показали, сто под действием гравитационных сил первоначально практически однородная среда в конце концов, за миллиарды лет могла приобрести структуру, наблюдаемую во Вселенной в современную эпоху. Реальная Вселенная, как оказалось, хорошо описывается моделями расширяющейся Вселенной, из которых следует, что раньше галактики были в среднем ближе к друг другу, чем сейчас, а 10 — 15 млрд. лет назад средняя плотность материи во Вселенной была такой большой, температура столь высокой, что вещество могло существовать только в виде элементарных частиц. В процессе расширения происходило образование химических элементов и постепенное формирование галактик, звёзд и других объектов. Теория расширяющейся Вселенной позволяет объяснить наблюдаемое соотношение содержания водорода и гелия в звёздах. Излучение, испущенное горячим газом миллиарды лет назад, ещё до образования галактик, приходит к нам с больших расстояний до сих пор и названо, поэтому реликтовым. Его существование было теоретически предсказано задолго до обнаружения. Энергия реликтового излучения максимальна в области очень коротких (миллиметровых) радиоволн. Это излучение приходит равномерно со всех направлений неба. Принимая его с помощью радиотелескопов, мы получаем информацию о физических свойствах вещества на ранних этапах расширения Вселенной, когда его средняя плотность была в сотни миллионов раз выше, чем в наше время. Открытие реликтивного излучения подтвердила выводы теории о том, что вещество тогда было горячим и распределялось равномерно.

  Что представляло собой Вселенная до начала расширения, на самых ранних его этапах, и сменится ли в будущем расширение сжатием? Это очень сложные вопросы, над решением которых учёные работают сейчас.

  Вселенная безгранична во времени и пространстве. Она не имела начала и никогда не будет иметь конца, она всегда существовала, и будет существовать. Всё это касается Вселенной в целом, точнее, материи, из которой она состоит. Отдельные же её части, например Земля, Солнечная система, звёзды и даже звёздные системы — галактики, возникают, совершают долгий путь развития и когда-нибудь прекратят своё существование, с тем чтобы образующая их материя приняла новую форму. Медленно меняется и вся окружающая нас Вселенная. Об этом говорит, например, происходящее в наше время увеличение расстояний между галактиками.

  На смену отжившим мирам возникают новые миры. На них с течением времени при благоприятных условиях может возникнуть жизнь, путём постепенного усложнения воспроизводящая своё высшее выражение — разумные мыслящие существа.

  В настоящее время мы не можем ещё даже приблизительно оценить, у какого количества звёзд есть планеты, на скольких из них могла зародиться жизнь, где жизнь успела воспроизвести разумные существа и технику, допускающую возможность обмена информацией с другими цивилизациями. Мы знаем, что центральное тело нашей планетной системы — Солнце, которое является обычной звездой. И Солнце и Земля, и другие члены Солнечной системы состоят из тех же химических элементов и подчиняются тем же законам физики, что и другие тела, наблюдаемые на самых различных расстояниях. Поэтому условия, которые когда-то привели к зарождению жизни на Земле, должны реализовываться и в других областях Вселенной, даже если эти условия связаны с редким стечением обстоятельств. Очаги жизни, а тем более разумной жизни, могут быть отделены друг от друга очень большим расстоянием, что сильно затрудняет их поиск. Развитие науки и техники позволит в будущем ответить на вопрос о распространённости жизни во Вселенной.

  Возможная уникальность земной цивилизации повышает ответственность человечества за сохранение природы нашей планеты и жизни на ней во имя мира и прогресса.     
Использованная литература:
«Астрономия наших дней» И. А. Климишин.

«Николай Коперник» Е. А. Гребенников.

«Астрономия 11 — класс» Б. А. Воронцов.

                    

baza-referat.ru

Вселенная. Галактика (млечный путь), Солнечная система. Их состав и происхождение.

ТОП 10:

Вселенная — совокупность всего, что существует физически. Это совокупность пространства, времени, всех форм материи. Астрономические наблюдения позволили установить происхождение Вселенной и её приблизительный «возраст», который по последним данным составляет 13,73 ± 0,12 миллиардов лет. Однако, среди некоторых учёных существует точка зрения относительно происхождения Вселенной, которая заключается в том, что Вселенная никогда не возникала, а существовала вечно и будет существовать вечно, изменяясь лишь в своих формах и проявлениях.

Событие, связанное с происхождением Вселенной и предположительно положившее начало Вселенной, называется Большой взрыв. Исходя из математической модели Большого взрыва, на момент, когда он произошел, вся материя и энергия в ныне наблюдаемой Вселенной были сконцентрированы в одной точке с бесконечной плотностью. После Большого взрыва Вселенная начала стремительно расширяться, принимая современную форму. Так как Специальная теория относительности предполагает, что материя не способна преодолеть скорость света, кажется парадоксальным, что через 13.7 миллиардов лет в фиксированном пространстве-времени две галактики может разделять 93 миллиарда световых лет. Это естественное следствие Общей теории относительности. Космос может расширяться неограниченно, поэтому, если пространство между двумя галактиками «расширяется», то они могут отдаляться друг от друга на скоростях и более скорости света.

В самом крупном масштабе строение Вселенной представляет собой расширяющееся пространство, заполненное губкообразной клочковатой структурой. Стенки этой губчатой структуры Вселенной представляют собой скопления миллиардов звёздных галактик. Расстояния между ближайшими друг к другу галактиками составляют обычно около миллиона световых лет. Каждая звёздная галактика составлена из сотен миллиардов звёзд, которые обращаются вокруг центрального ядра. Размеры галактик составляют до сотен тысяч световых лет. Звёзды состоят в основном из водорода, который является самым распространённым химическим элементом во Вселенной.

Галактикой называется большая система из звёзд, межзвёздного газа, пыли, и тёмной материи, связанная силами гравитационного взаимодействия. Обычно звездные галактики содержат от 10 миллионов до нескольких триллионов звёзд, вращающихся вокруг общего центра тяжести. Кроме отдельных звёзд и разрежённой межзвёздной среды, большая часть галактик содержит множество кратных звёздных систем, звёздных скоплений и различных туманностей. Как правило, диаметр галактик составляет от нескольких тысяч до нескольких сотен тысяч световых лет, а расстояния между ними исчисляются миллионами световых лет. Хотя около 90 % массы галактик приходится на долю тёмной материи, природа этого невидимого компонента пока не изучена. Существуют свидетельства того, что в центре многих (если не всех) галактик находятся сверхмассивные чёрные дыры. Межгалактическое пространство является практически чистым вакуумом со средней плотностью меньше одного атома вещества на кубический метр. Возможно, что в наблюдаемой части Вселенной находится около 1011 звёздных галактик. Существует три основных вида галактик: эллиптические, спиральные и неправильные. Наша галактика Млечный Путь является большой дискообразной спиральной галактикой с перемычкой, диаметром около 30 килопарсек (или 100 000 световых лет) и толщиной в 3000 световых лет. Она содержит около 3×1011 звёзд, а её общая масса составляет около 6×1011 масс Солнца.

Солнечная система — звёздная система, состоящая из Солнца и планетной системы, включающей в себя все естественные космические объекты, обращающиеся вокруг Солнца: планеты и их спутники, карликовые планеты и их спутники, а также малые тела — астероиды, кометы, метеороиды, космическую пыль. Солнечная система входит в состав галактики Млечный путь. Согласно современным представлениям, Солнечная система сформировалась приблизительно 5 миллиардов лет назад в результате сжатия газопылевого облака. Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Солнце — жёлтая звезда, представляющая собой центральное тело Солнечной системы, в котором сосредоточена подавляющая часть всей её массы (около 99,866 %), и которое удерживает своим тяготением планеты и прочие принадлежащие Солнечной системе тела. Большая часть планет обращается вокруг Солнца в одном направлении, по эллиптическим орбитам с небольшим эксцентриситетом и малым наклонением к плоскости эклиптики, т. е. плоскости орбиты Земли. Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удалённой планеты — Нептуна — орбитальный период составляет 165 лет. Самой большой массой и самым большим экваториальным диаметром обладает Юпитер, самыми маленькими – Меркурий.




infopedia.su

Отправить ответ

avatar
  Подписаться  
Уведомление о